河北59名一线抗疫的医护人员解除隔离
来源:河北59名一线抗疫的医护人员解除隔离发稿时间:2020-04-01 21:08:24


国际顶级学术期刊《柳叶刀-全球健康》当地时间3月25日发表的一项研究,通过数学建模的方式回答了上述两个问题。该研究显示,停学、停工等增加人与人之间物理距离的干预措施,极大地减少了武汉新冠感染患者数,并推迟了流行病高峰的出现。而相比3月份解封,4月份解封更为合适。

第二种情况,没有干预措施:在有寒假和农历新年的情况下,但并未施加物理疏离措施。由于1月15日至2月10日学校放寒假,学校里没有人与人之间的接触。分别在2020年1月25日至2020年1月31日以及2020年2月1日至2月10日的期间中工作的劳动力分别为正常情况下的10%和75%;

以上研究来自全球顶尖的医学院之一伦敦卫生与热带医学院,通讯作者为该学院传染病流行病学系传染病数学建模中心的负责人Kiesha Prem博士。

其中β是传播率(按照R0取值),Cij描述了:“年龄段j”的接触者“年龄段i”,κ= 1-exp(–1 / dL)是每日暴露的概率个体具有传染性(d为平均潜伏期),并且γ= 1–exp(–1 / dI)是当平均感染持续时间为dI时被感染个体恢复的每日概率。研究者还纳入了无症状和亚临床病例的贡献,1-ρi表示感染病例无症状或亚临床的可能性。研究者假设年轻的个体更有可能是无症状的(或亚临床的)和传染性较小的(与Ic,α相比,传染性的比例)。

从1月23日起,武汉市为应对疫情采取了前所未有的隔离措施,包括扩大学校和工作场所的停业时间。研究者旨在评估扩大物理距离措施对COVID-19流行病进展的影响,希望为世界其他地区提供一些见解。

研究者提供了200次模拟暴发的中位数累积发病率,每天的新报告病例和每天的特定年龄发病率。

对于给定的年龄段i,可以通过以下公式描述流行病转变:

研究者根据感染状况将人群分为易感性(S),暴露性(E),感染性(I)和排除(R)个体,并根据年龄分为5年范围,直至70岁,外加一个年龄段75岁及以上,总共分出16个年龄组。易感人群在接触传染性患者后,会以一个相对固定的速率被感染,随后康复或死亡。在整个传染病流行过程中,研究者假设武汉是一个封闭的系统,人口恒定为1100万(即S + E + I + R = 1100万)。研究者使用了图中所示的SEIR模型。

西班牙外交大臣:应携手互助 不要把善意之举当成“口罩外交”

加入这些矩阵和武汉暴发的流行病学参数的最新估值后,研究者使用年龄结构的易感-暴露-感染-排除(SEIR)模型模拟了武汉在进行了物理疏离措施后(一系列包括关闭工作场所、减少普通社区中的人群汇聚)的疾病暴发持续轨迹。